博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1512 字,大约阅读时间需要 5 分钟。

在TensorFlow中,变量共享机制通过variable_scopename_scope实现,无需传递引用即可在不同代码块共享变量。这种机制的核心在于tf.get_variable函数,它允许在不同的代码块中创建或检索变量。值得注意的是,tf.get_variabletf.Variable存在显著区别:后者会在每次创建时生成新的变量,并在名称中自动添加后缀以区分不同的实例。

在使用tf.get_variable创建变量或检索现有变量时,name_scope会被忽略。这意味着即使在不同的tf.variable_scope中创建变量,它们的命名空间仍会根据variable_scope的设置进行调整。以下代码示例展示了这一点:

import tensorflow as tfwith tf.name_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

然而,如果希望通过tf.get_variable创建的变量能够在其他代码块中被访问,需要使用tf.variable_scope。这样可以确保变量在不同代码块中共享:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

此外,tf.variable_scope还支持reuse参数。当reuse=True时,变量会在同一个scope中被多次使用,而name_scope则会被忽略:

import tensorflow as tfwith tf.variable_scope('share'):    share = tf.get_variable('share_variable', [1])with tf.variable_scope('share', reuse=True):    share_test = tf.get_variable('share_variable', [1])    print(share.name)        # share/share_variable:0    print(share_test.name)   # share/share_variable:0

通过上述方法,可以有效地在TensorFlow中管理变量的共享和命名,确保变量在不同代码块中能够被正确访问和使用。

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>